PHYSICAL REVIEW E 75, 016306 (2007)

Multiscale gas-kinetic simulation for continuum and near-continuum flows
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It is well known that for increasingly rarefied flow fields, predictions from continuum formulations, such as
the Navier-Stokes equations, lose accuracy. The inclusion of higher-order terms, such as Burnett or high-order
moment equations, could improve the predictive capabilities of such continuum formulations, but there has
been only limited success. Here, we present a multiscale model. On the macroscopic level, the flow variables
are updated based on the mass, momentum, and energy conservation through the fluxes. On the other hand, the
fluxes are constructed on the microscopic level based on the gas-kinetic equation, which is valid in both
continuum and near-continuum flow regimes. Based on this model, the nonequilibrium shock structure, Poi-
seuille flow, nonlinear heat conduction problems, and unsteady Rayleigh problem will be studied. In the
near-continuum flow regime, the current gas-kinetic simulation is more efficient than microscopic methods,
such as the direction Boltzmann solver and direct-simulation Monte Carlo method. In the continuum flow limit,

the current formulation will go back to the gas-kinetic Navier-Stokes flow solver automatically.
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I. INTRODUCTION

The dynamical behavior of flows far from hydrodynamic
equilibrium is an important subject of nonequilibrium ther-
modynamics, with many applications in science and engi-
neering. The classification of various flow regimes is based
on a dimensionless parameter—i.e., the Knudsen number,
which is a measure of the degree of rarefaction of the me-
dium. The Knudsen number Kn is defined as the ratio of the
mean free path to a characteristic length scale of the system.
In the continuum flow regime where Kn<<0.001, the Navier-
Stokes equations with linear relations between stress and
strain and Fourier’s law for heat conduction are adequate to
model the fluid behavior. For flows in the continuum-
transition regime (0.01 <Kn<1), the Navier-Stokes equa-
tions are known to be inadequate. This regime is important
for many practical engineering problems, such as the simu-
lation of microscale flows [1] and hypersonic flow around
space vehicles in low Earth orbit [2]. Hence, there is a strong
desire and requirement for accurate models which give reli-
able solutions with lower computational costs.

Currently, the direct-simulation Monte Carlo (DSMC)
method is the most successful technique in the numerical
prediction of low-density flows [3]. However, in the
continuum-transition regime, especially for the low-speed
flow, the DSMC method suffers from statistical noise in the
bulk velocity because of the random molecular motion.
When the bulk velocity is much slower than the thermal
velocity, many independent samples are needed to eliminate
the statistical scattering, as for microelectromechanical sys-
tem (MEMS) simulations. In fact, for the air at room tem-
perature, the standard deviation in the molecular speed is
about 300 m/s, which would require approximately 9 X 10°
independent samples in the DSMC method to reduce the
scatter in the bulk velocity to 0.1 m/s. For MEMS gas flows
that operate in the mm/s range, the number of required
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samples can grow into trillions. So the DSMC method is
impractical in these cases. Also, the requirement of cell size
being less than the particle mean free path in the DSMC
method prevents it from being widely applied in the con-
tinuum flow regime, especially for flows with high Reynolds
numbers.

Alternatively, many macroscopic continuum models have
been intensively developed in the literature. These include
the Navier-Stokes and Burnett equations from the Chapman-
Enskog expansion, Grad’s 13 moment equations, the regular-
ized 13 equations, and many others [1]. In order to assess
these continuum models, a few tests have been carried out
[4]. They concluded that none of the models is commonly
acceptable for rarefied flow simulations. Overall, the small
length scales and slow bulk gas velocity combine to make
the continuum solution inaccurate and the particle solution
time consuming. Besides the DSMC and continuum models,
many alternative approaches have also been proposed in re-
cent years, such as the information preservation (IP) method
[5,6] and the lattice Boltzmann method (LBM) [7]. However,
the IP method and LBM are mostly used for isothermal
flows. Recently, by considering only the deviation from equi-
librium, Baker and Hadjiconstantinou developed a variance
reduction method for a Monte Carlo solution of the Boltz-
mann equation [8], where significant computational savings
can be obtained.

The goal of this study is to present a multiscale simula-
tion, which uses both the macroscopic (mass, momentum,
and energy densities) and microscopic (gas distribution func-
tion and particle collision) descriptions. On the microscopic
level, a flux is constructed based on a close solution of the
gas-kinetic equation for an update of the flow variables on
the macroscopic level.

II. GAS-KINETIC EQUATION AND MULTISCALE
NUMERICAL FORMULATION

The Boltzmann equation expresses the behavior of a
many-particle kinetic system in terms of the evolution equa-
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tion for a single-particle gas distribution function. The sim-
plification of the Boltzmann equation given by the
Bhatnagan-Gross-Krook (BGK) model is formulated as [9]

o o _fi=f

ot Jx T

, (1)

where f is the number density of molecules at position x and
particle velocity u=(u,v,w) at time ¢. The left-hand side of
the above equation represents the free streaming of mol-
ecules in space, and the right-hand side denotes the collision
term. If the distribution function f is known, macroscopic
variables, such as mass, momentum, energy, and stress, can
be obtained by integration over the moments of molecular
velocity. In the BGK model, the collision operator involves
simple relaxation to a state of local equilibrium, the distribu-
tion function given by f*? with a characteristic time scale 7.
For a monotomic gas, the equilibrium state is given by a
Maxwellian,

)N 3/2 )
feq:p(;) e Mu-UY]

where p is the density, U is the macroscopic fluid velocity,
and A is equal to m/2kT. Here, m is the molecular mass, k is
the Boltzmann constant, and T is the temperature. The rela-
tion between mass p, momentum pU, and energy densities
pE with the distribution function f becomes

p
pU |= f Yofdu, @)
pE

where ¢, is the component of the vector of moments,
( )
= l,u,—u2> :
v 2

and the volume element in the phase space with
du=dudvdw and v?=u?+v%+w?. Since mass, momentum,
and energy are conserved during particle collisions, f and ¢
satisfy the conservation constraint

f(ffq—f)t/fadu=0 3)

at any point in space and time. The BGK model was origi-
nally proposed to describe the essential physics of molecular
interactions with 7 chosen as the molecular collision time.
Although the BGK model appears to describe only weak
departures from local equilibria, it has long been recognized
that such an approximation works well beyond its theoretical
limits as long as the relaxation time is known for the physical
process. Based on the above BGK model, the Navier-Stokes
equations can be derived with the Chapman-Enskog expan-
sion truncated to first order,

f=r+Knf, = - {9ffor+u- 9f<ox).  (4)

For the Burnett and super-Burnett solutions, the above
expansion can be naturally extended [10], such as
f=r+Knf, +Kn’f, + Kndfs+- .
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Even though great progress has been made in the past two
decades in the construction and analysis of the extended hy-
drodynamics system, the Burnett and super-Burnett equa-
tions, or regularization of the moment equations, the most
successful method to accurately capture rarefied gas effect is
still the DSMC method. The DSMC method is basically
equivalent to solving the Boltzmann equation by simulating
the free transport and collision steps in a particle transport
process. The DSMC solution has the same solution as the
full Boltzmann equation. However, based on the Chapman-
Enskog expansion, only a limited number of truncated solu-
tions are retained. Different from the Chapman-Enskog ex-
pansion, our present model is based on a closed solution of
the kinetic equation. From the BGK model, we assume that it
has the following closed solution:

== 7(9f Ut +u - If°Ix), (5)

where 7. is the parameter to be determined. The difference
between the above solution and the first-order Chapman-
Enskog expansion (4) is that a generalized collision time 7«
is introduced. Substituting the above equation into the BGK
model (1), we can obtain the relation between the general-
ized particle collision time 7 and the collision time 7, which
is well defined in the continuum flow regime,

__M-Dr)
T AD DY)

where D=4d/dt+u-d/dx. To the leading order, a simplified
local collision time

(6)

-
T AD D)

can be obtained. In the continuum flow limit, the modifica-
tion term 7D?f*4/Df*¢~Kn is expected to be small and 7
reverts back to 7, which is determined by 7=u/p. The dy-
namic viscosity coefficient u can be obtained experimentally
or theoretically, such as Sutherland’s law. In order to remove
the dependence of the collision time 7« on the individual
molecular velocity, D>f?/Df%? can be evaluated by taking a
moment ¢, such as [@D*f%udé/ [ pDf9dudé. Since
the stress and heat conduction terms result from the different
moments of the gas distribution function, the value of
7+ in the viscosity term 7.p and heat conduction
coefficient 7pC,/Pr are obtained separately from different
moments: ¢;=(u-U)?> for the viscosity coefficient and
¢,=(u—U)[(u=U)?] for the heat conduction coefficient. A
single moment was used in an early investigation of the ar-
gon shock structure calculation [11]. Since both D?f°¢ and
Df*? involve higher-order spatial and temporal derivatives of
an equilibrium gas distribution function, a nonlinear limiter
is imposed on the determination of 7,

()

-
N max(— a Kn,min(7(D*f°9/Df*?),aKn))’

(8)

where Kn is the Knudsen number and « takes the value 2.
The reason for introducing the above limiter is the following.
First, since there are several terms involved in szeq/ Df,
the mathematical evaluation of the ratio will be sensitive to
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the numerical error and large fluctuations will be generated,
especially in the flow region close to equilibrium, where both
first- and second-order derivatives tend to vanish. Also, the
difference between 7. and 7 depends on the rarefaction of the
flow. So, in order to avoid numerical singularity, a Knudsen-
number-dependent limiter is used. With the above formula-
tion, in the continuum flow limit—i.e., Kn — 0—the modifi-
cation to 7 vanishes and the traditional definition 7 is
recovered.

The multiscale gas-kinetic scheme (GKS) for the near-
continuum flow simulation is constructed based on the trans-
fer between the macroscopic and microscopic flow descrip-
tions. On the macroscopic level, the time evolution of the
macroscopic variables can be achieved through a finite-
volume formulation. For each control volume, such as
x € [Xj_12,Xj41/2] in the one-dimensional (1D) case, the up-
date of conservative flow variables is

At

n+l _ n,
Wj _Wj +

Ar), [Fj10(0) = F iy p()]dt, )

where W;’ are the cell-averaged mass, momentum, and total
energy and F;,,, are the corresponding fluxes at a cell inter-
face, which is provided at microscopic level using the solu-
tion of the kinetic model,

F=fu¢fdu.

Note that At is the time step Ar=¢""'—¢". As an explicit nu-
merical scheme, the time step of the GKS for high-Reynolds-
number flows is determined by the Courant-Friedrichs-Lewy
(CFL) condition—i.e., At=Atcp; = 9pAx/ (|U|pax+c5), Where
0=%=1 is the CFL number, Ax is the minimum cell size,
|U] e is the maximum of the velocity, and ¢,=VRT is the
sound speed. For low-Reynolds-number flows, the viscous
term also influences the stability, and another criterion
At=(Ax)?/(2Pv), with spatial dimension D, should be im-
posed on the time step. Therefore, a unified stability condi-
tion can be expressed as

= 7Ax
(JU| + ¢ (1 +2/Rey,)’

A (10)
where Rey,=|U|Ax/v is the grid Reynolds number.

The microscopic model is mainly used to evaluate the gas
distribution function at a cell interface. Equation (4) only
presents a gas distribution function at an instant of time, such
as the beginning of each time step #"=0. In order to obtain a
high-order accurate solution in the whole time step from #" to
"1, we need to evaluate a time-dependent gas distribution
function, which can be constructed in the following [12]:

f=fea— T*(3f4/8t+ué’feq/<9x)+t§. (11)

The relation between 7« and 7 is given in Eq. (7), where
t=u/p and p is given by Sutherland’s law. The time-
dependent part tdf*?/dt is used to account for the time evo-
lution of the gas distribution function. In the 1D case, for a
monotomic gas the equilibrium state f¢¢ is
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FIG. 1. (Color online) Temperature and density (a) and heat flux
(b) distributions in a M=8 argon shock structure with wu~ 7068,
DSMC solution [13] vs present multiscale model.

32
"=p<7—7) exp[~A(u-U)’]. (12)
The expansion Jf¢?/dx can be expressed as

af

P (ay + ayu + azu?)f* = af*e,
x

Then, all the coefficients can be explicitly determined
through the relation between the microscopic and macro-
scopic variables—i.e., W= [¢f*%du and dW/dx=[paf*Idu,
where W=(p, pU,pE)T are the macroscopic mass, momen-
tum, and energy densities. The temporal variation of df?/dt
can be expanded similarly as a spatial expansion, and the
corresponding coefficients can be obtained from the compat-
ibility condition [(f—f*?)pdu=0—i.e.,
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FIG. 2. Velocity distribution in the Poiseuille flow for HS mol-
ecules u~ 793, at two different Knudsen numebrs Kn=0.1128 (a)
and Kn=0.4514 (b). Circles: solution of the Boltzmann equation
[14]. Solid line: present multiscale model.

f WIfYIt +u d [ Ix)du = 0.

Therefore, on the microscopic level, a time-dependent gas
distribution function can be uniquely constructed, which can
be subsequently used in the evaluation of the corresponding
fluxes.

In order to simulate the flow with any realistic Prandtl
number, a modification of the heat flux in the energy trans-
port, such as that used in [12], is also implemented in the
present study.

III. NUMERICAL EXPERIMENTS

To test the correctness of the above multiscale model, we
have studied a few cases for the near-continuum flow, which
are the argon shock structure, Poiseuille flow for hard sphere
(HS) molecules, nonlinear heat conduction problems for he-
lium gas, and the unsteady Rayleigh problem.

For nonequilibrium flow, one of the simplest and most
fundamental gas dynamic phenomena that can be used for
model validation is the internal structure of a normal shock
wave. There are mainly two reasons for this. First, the shock
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FIG. 3. Density ratio versus position for helium gas in a channel
with temperatures 7y=294 K, and 7-=79 K and accommodation
coefficients ay=a-=0.58 at two different Knudsen numbers
Kn=0.118 (a) and Kn=0.399 (b). Circles: experimental data [15].
Dashed line: Navier-Stokes solution. Solid line: present multiscale
model.

wave represents a flow condition that is far from thermody-
namic equilibrium, and second, the shock wave phenomenon
is unique in that it allows one to separate the continuum
differential equations of fluid motion from the boundary con-
ditions. The boundary conditions for a shock wave are sim-
ply determined by the Rankine-Hugoniot relations. For the
Mach-number-8 argon shock structure, Bird’s [13] DSMC
method using an inverse 1lth-power repulsive potential
u~T%% gave good agreement with the experimental profile
of argon gas. Figure 1 shows the solution of temperature,
density, and heat flux from the current multiscale model
compared with Bird’s DSMC solutions. For this Mach-8
case, the shock thickness and the separation distance be-
tween the density and temperature profiles by the current
model compare well with DSMC solution.

The Poiseuille flow is also a fundamental flow problem of
rarefied gas dynamics, which is closely related to the flow in
microchannel devices. An accurate analysis of this problem
has been carried out by many authors [1]. One of the bench-
mark results is the solution of the Boltzmann equation,
which has been obtained by Ohwada ez al. [14] for HS mol-
ecules. For HS molecules, we have u~ VT to determine the
dynamical viscosity coefficient. The boundary condition for
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FIG. 4. Unsteady Rayleigh problem at time r=107. Solid lines:
DSMC solutions [6]. Circles: present model.

the Poiseuille flow here is the Maxwell’s diffusive boundary
condition with accommodation coefficient 1. The velocity
distributions for both the Boltzmann equation and the current
multiscale model are shown in Fig. 2 at two different
Knudsen numbers. In the continuum flow regime—i.e.,
Kn=0.001—the current model automatically gives accurate
Navier-Stokes solutions.

The next case is about the nonlinear heat transfer in the
near-continuum flow regime. The experimental apparatus
used in [15] consisted of two parallel flat plates made of
aluminum, one cooled by liquid nitrogen and the other
heated by electric heaters. The temperatures of the hot and
cold plates were 294 and 79 K, respectively. Helium gas was
used as the test gas in the experiments. The Knudsen number
is defined as the ratio of the mean free path at the center
plane to the distance between the plates. For the boundary
condition, the thermal accommodation coefficients measured
in the free molecule regime in [16] were used with the as-
sumption that their values remained constant over the entire
range (a@=0.58). The density distributions obtained from the
current model and the continuum Navier-Stokes solution are
compared with the experimental data in Fig. 3.

The last test is the Rayleigh problem. The Rayleigh flow
is an unsteady flow in which a plate below a gas at rest
suddenly acquires a constant parallel velocity and a constant
temperature. In the current calculation [6], the argon gas is at
rest at =0 with a temperature of 273 K. When #>0, the
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FIG. 5. Unsteady Rayleigh problem at time r=1007. Solid lines:
DSMC solutions [6]. Circles: present model.

plate obtains a constant velocity 10 m/s and a constant tem-
perature 373 K. Figures 4 and 5 show the simulated solution
for density, temperature, and velocities at two times of
t=107 and 1007, where the agreement between the present
model and the DSMC results is good at both times.

IV. CONCLUSION

The multiscale method presented in this paper is a natural
extension of the gas-kinetic method for the Navier-Stokes
solutions to the near-continuum flow regime. The distin-
guishable point of the current kinetic model is that a closed
solution of the BGK equation is used in the evaluation of a
generalized particle collision time, which subsequently ad-
justs the values of the dissipative coefficients, such as the
viscosity and heat conduction coefficients, in the near-
continuum flow regime. This model has been successfully
applied to a few nonequilibrium flow problems, such as the
shock structure, Poiseuille flow, and unsteady Rayleigh prob-
lems. The merit of a multiscale method is due to the coupling
between macroscopic and microscopic flow descriptions.
The conservative flow variables are updated on the macro-
scopic level through the fluxes, which are evaluated on the
microscopic level, where the flow physics can be much eas-
ily implemented. For the near-continuum flow, the DSMC
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method is very expensive and the continuum formulations
are inaccurate. The current gas-kinetic method provides such
a method, which has similar efficiency as the Navier-Stokes
flow solvers, but with the flexibility in the modeling of the
nonequilibrium effect on the particle distribution level. Fur-
thermore, the current method can be naturally extended to
include multiple translational, rotational, and vibrational
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temperatures, where the macroscopic governing equations
are not well defined.
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